
J .  Fluid Mech. (1982), vol. 118, pp. 445-470 

Printed in Great Britain 
445 

Measurement of fluid turbulence based on pulsed 
ultrasound techniques. Part 1. Analysis 

By JOSEPH L. GARBINI, F R E D  K. FORSTERt 
A N D  JENS E. JORGENSEN 
Department of Mechanical Engineering, 

University of Washington, Seattle, U.S.A. 

(Received 27 February 1981 and in revised form 30 September 1981) 

The pulsed ultrasonic Doppler velocimeter has been used extensively in transcutaneous 
measurement of the velocity of blood in the human body. It would be useful to evaluate 
turbulent flow with this device in both medical and non-medical applications. However, 
the complex behaviour and limitations of the pulsed Doppler velocimeter when applied 
to random flow have not yet been fully investigated. 

In  this study a three-dimensional stochastic model of the pulsed ultrasonic Doppler 
velocimeter for the case of a highly focused and damped transducer and isotropic 
turbulence is presented. The analysis predicts the correlation and spectral functions 
of the Doppler signal and the detected velocity signal. The analysis addresses specific- 
ally the considerations and limitations of measuring turbulent intensities and one- 
dimensional velocity spectra. 

Results show that the turbulent intensity can be deduced from the broadening of 
the spectrum of the Doppler signal and a mathematical description of the effective 
sample-volume directivity. 

In the measurement of one-dimensional velocity spectra at  least two major complica- 
cations are identified and quantified. First, the presence of a time-varying, broad-band 
random process (the Doppler ambiguity process) obscures the spectrum of the random 
velocity. This phenomenon is similar to that occurring in laser anemometry, but the 
ratio of the level of the ambiguity spectrum to the largest detected velocity spectral 
component can be typically two to three orders of magnitude greater for ultrasonic 
technique owing to the much greater wavelength. 

Secondly, the spatial averaging of the velocity field in the sample volume causes 
attenuation in the measured velocity spectrum. For the ultrasonic velocimeter, this 
effect is very significant. 

The influence of the Doppler ambiguity process can be reduced by the use of two 
sample volumes on the same acoustic beam. The signals from the two sample volumes 
are cross-correlated, removing the Doppler ambiguity process, while retaining the 
random velocity. The effects of this technique on the detected velocity spectrum are 
quantified explicitly in the analysis for the case of a three-dimensional Gaussian- 
shaped sample-volume directivity. 

t Also at Center for Bioengineering, University of 'Washington, Seattle. 
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1. Introduction 
I .  I .  Preliminary remarks 

Pulsed ultrasonic Doppler velocimetry combines the transmission of bursts of high- 
frequency sound with the gated reception of the scattered acoustic energy to  measure 
velocity a t  a specific point in a flowing liquid. The potential exists for the use of this 
device in circumstances where i t  is impracticable to  invade the flow field or where 
ultrasound offers advantages over the use of thermal or laser anemometry. Liquids 
containing particulates, sediments or gas bubbles complicate the use of hot-film 
probes but may provide ideal conditions for acoustic measurements. For example, in 
employing thermal anemometry to  measure turbulence in the ocean a major problem 
is physical prot,ection and cleaning of the sensing element. These problems would 
be virtually non-existent for an ultrasonic velocimeter. 

The primary aim of this study is to  evaluate the conditions under which velocity 
correlations or velocity spectra may be measured with ultrasonic Doppler velocimetry. 
Towards this end, an analytical model of this instrument for homogeneous turbulence 
in steady flow has been developed, and the limitations in measurement accuracy and 
resolution are explored. 

The Doppler ambiguity process, similar t o  but generally more restricting than that 
of laser instruments, poses a major limitation to  ultrasonic velocimetry. A dual- 
measurement technique for reducing the effective Doppler ambiguity, which takes 
advantage of the pulsed nature of this instrument, is proposed and its efficiency 
examined. 

I n  addition, an extensive laboratory experimental programme was undertaken t o  
examine the validity of all major model implications and to evaluate the Doppler 
ambiguity reduction technique. The results of the experimental investigation are 
presented in part 2 of this study (Garbini, Forster & Jorgensen 1982). 

1.2. Pulsed ultrasonic Doppler jlowmeter principles 

The pulsed ultrasonic Doppler velocimeter (PUDV) to  be considered in this study is 
of a type commonly used for medical diagnosis. It employs a single piezoelectrical 
crystal transducer for both transmitting and receiving acoustic signals. The transducer 
is focused to  a narrow beam a t  a distance of 2 to 10 cm. The transmitted signal is 
composed of bursts of a high-frequency sinusoid which are regularly repeated a t  a 
much lower frequency. Typical values of the master oscillator frequencies are 1- 
10 MHz and those of the pulse repetition frequency (PRF) are 5-30 kHz. Between 
transmitted bursts the receiver is activated to detect echoes from particles in the flow. 
This signal contains the superposition of echoes from the particles within the ultra- 
sonic beam. Since the particles are moving, each scattered echo is Doppler-shifted 
in frequency. 

The received signal is mixed with (multiplied by, in this context) a continuous sinu- 
soid with frequency equal to that of the master oscillator. High-frequency components 
are filtered from the resulting waveform, leading only components of frequency equal 
to  the difference between the master oscillator frequency and that of the received 
signal, i.e. the Doppler frequency. 

The output of the mixer is continuously sampled a t  the P R F  but a t  times delayed 
by r with respect to  the transmission of the bursts. The echoes sampled a t  these 
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FIGURE 1. Operation of the pulsed ultrasonic Doppler velocimeter. 

distances can only have originated in regions in space that are located at multiples 
of $7~. Further, the axial dimension of these regions must correspond to  the equivalent 
spatial length of a transmitted burst. Normally, proper experimental design and atten- 
uation in the acoustic mediumensure that only echoes from the nearest of these regions 
will contribute significantly to  the result. This region in space is commonly called the 
sample volume. It is described by a spatial weighting function characterized in the 
lateral beam direction by the sound field, and in the axial direction by the shape of the 
transmitted burst. 

The sampled signal is then filtered to  produce an analog waveform called the Doppler 
signal. Ideally, the frequency of the Doppler signal is proportional to  the velocity of 
the particles within the sample volume. This is described by the formula 

where f d  is the Doppler signal frequency, f o  is the master oscillator frequency, c is the 
speed of sound, V is the speed of the particles, and 0 is the angle between the ultrasonic 
beam and the direction of motion (the Doppler angle). 

The Doppler signal frequency can be measured in a manner similar to  FM demodu- 
lation to obtain a direct measure of the velocity. However, the resulting output con- 
tains additional components that are not related directly to  velocity. Therefore this 
quantity is referred to as the detected velocity signal. 

For both laminar and turbulent flow, the output of the pulsed ultrasonic Doppler 
velocimeter may be considered in terms of the power spectra of the Doppler and 
detected velocity signals. I n  a highly idealized sense these cases are depicted in the top 
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four graphs of figure 1. Significant to this discussion is that the spectrum of the detected 
velocity signal is associated ( $  2.3) with the one-dimensional energy spectrum of tur- 
bulent flow. Also, the width ofthe Doppler signal spectrum is related to the turbulence 
intensity ($ 2.2). 

The description, so far, of the ultrasonic velocimeter has been highly simplified. 
Effects associated with the site and shape of the sample volume and with the detection 
process contribute to deviations from these concept,s. For instance, in the relatively 
simple case of laminar flow the random transit of particles through the finite sample 
volume will cause the Doppler signal spectrum to broaden. This causes a broad-band 
noise process to be introduced into the Doppler velocity spectrum. 

For turbulent flow, this same phenomenon increases the width of the Doppler spec- 
trum beyond that associated with the turbulence intensity. In  turn, the one-dimen- 
sional energy spectrum estimate is contaminated by the superposition of the broad- 
band noise process. 

This ' transit-time' effect, which is illustrated in the bottom four graphs of figure 1, 
will be analysed in detail, along with other characteristics of the ultrasonic velocimeter, 
in $ 2 .  

2. Analysis 
2.1.  The Doppler signal 

Although stochastic models for ultrasonic Doppler velocimeters are described in the 
literature (Brody & Meindl 1974; Flax, Webster & Stuart 1971; Newhouse 1973)) 
they apply primarily to situations in which the flow is steady and laminar. Very little 
consideration has yet been given to the characteristics of the devices in either non- 
steady or turbulent flows. Further, the existing models do not apply precisely to the 
type of instrument described here. 

The following analysis of the pulsed ultrasonic Doppler velocimeter is intended to  
apply to the high-resolution system described in $ 1. It is assumed that the device 
uses a single-crystal transducer, coherent demodulation, and sample-and-hold gating. 
While major considerations, assumptions and results are presented here, a more de- 
tailed derivation may be found in the literature (Garbini 1978). 

Consider the situation of a single particle within the range of the transducer satisfy- 
ing the following assumptions. 

(i) The particle diameter is small with respect to the wavelength, A, of the trans- 
mitted acoustic carrier. 

(ii) Acoustic scattering from the particle has random amplitude and phase. 
(iii) The component of the particle velocity in the direction of the transducer is 

much smaller than the speed of sound in the fluid medium. Also, the average value of 
this component is much greater than the velocity fluctuations. 

(iv) The effective ultrasonic beam length is shorter than the unambiguous range 
($prP, where T , ~  is the pulse-repetition interval). This ensures that only information 
from a single spatial sample volume nearest to the transducer is processed. 

(v) The sampling region is sufficiently small and distant from the transducer that 
the distance from a particle in the same volume to any point on the transducer is 
constant. This is approximately true for particles in the far field of acoustically 
focused transducers. 
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(vi) The transmitted signal consists of a high-frequency carrier modulated by a 
periodically repeated envelope function that varies slowly in comparison with the 
carrier. That is 

+a 

n=-ca 
xt(t) = const. x F(t - wrP) coso,(t - mrP), (2.1) 

where F is the envelope function describing the pulse shape, and wo is the radian 
frequency of the carrier. 

Under these conditions the sampled output of the mixer is 

xs(t)  = const. x S(t - 7 ~ 7 , ~  - 7,) aH(7) cos (k . r + y ) ,  (2.2) [ n= --m 1 
where 7, is the range delay interval, r is the position vector of the particle, S is the 
delta function, a is the random scattering amplitude, y is the random scattering phase, 
and k is the sum of the transmitted and received wave vectors. The distance to the 
sample volume is 47,~. 

For the case of a single-crystal transducer, k points straight out from the transducer 
and has magnitude 2oO/c. H(r) is the effective sample-volume directivity function. 
It is proportional to the product of the combined transmitting and receiving direc- 
tivities, and the shifted envelope function, F(t - r . k/wo);  see figure 2 .  

In  this development the absolute magnitude of the back-scattered amplitude is 
not of direct importance. Therefore, here, and throughout the remainder of this 
discussion H(r) is normalized such that 

H ( r ) d r  = 1, s space 

and a constant factor will be carried along, as in (2.2). The position of the particle 
may be expressed in terms of its initial position, ro, plus the integral of its velocity. 
That is 

In  general, the sample volume will contain many particles. In the following analysis 
it will be seen that the effective velocity observed by the flowmeter corresponds to 
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the average of the individual velocities, weighted by the sample-volume directivity 
function 

where N is the number of particles. The brackets { ) denote the spatial weighted 
average. 

In the obvious fashion, the effective displacement may be defined as 

Finally, for each particle the Lagrangian deviation from this average position is 

Wt) = J‘ W(6) - (u) ( 0 1  d t .  
0 

The position of the particle may be expressed as 

r = ro+(r)+Ar. (2.8) 

By casting the problem into this form it is possible to use a method of analysis very 
similar to those described in the literature for the laser-Doppler anemometer (Durrani 
& Greated 1973; George & Lumley 1973) and for atmospheric radar observation 
(Rogers & Tripp 1964; Srivastava & Atlas 1974). 

It is assumed that the scattering is first-order. That is, any portion of the radiation 
initially scattered from a part’icle that is rescattered by another is considered negligible. 
The total received signal is then the superposition of the contributions from the indi- 
vidual scatterers. From (2.2), the sampled output of the mixer is 

aiH(ry + (r) + Ar,) 

or xcos[k.(r:+(r)+Ar,)+y,] (2.9) 

xs(t)  = const. x [ n= --m 6(t-n~, , )][A2(t)+BZ(t)]~cos(k . (r)+@),  (2.10) 

1 
+-m 

where 
N 

i = l  
A ( t )  = c a,H(r;+(r) +Ari) cos ( k .  r?+ k .  Ari +y f ) ,  

N 

i = l  
B(t)  = - a,fl(r: + (r) +Art) sin (k . ry + k . Ari + yi), (2.11) 

= arctan [ B ( t ) / A ( t ) ] .  (2.12) 

The particle positions are assumed to be random and independent. The quantities 
x ( t ) ,  A ( t )  and B(t)  are sums of large numbers of independent, identically distributed 
random variables, and are therefore approximately Gaussian random processes. The 
population of the sample volume is typically of the order of 106. 

By a process similar to F M  detection the time derivative of tjhe argument, of the 
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cosine factor in (2.10) can be evaluated. The result is the quantity that has already 
been referred to as the detected velocity signal, and is seen to be 

(2.13) 

The first term, as expected, is the Doppler shift caused by the spatial weighted average 
of the instantaneous particle velocities within the sample volume. Except for the 
spatial average, it is identical with the highly idealized expression in (1.1). For a 
small sample volume, the appropriately scaled power spectrum of this term gives 
an estimate of the energy spectrum of the flow velocities. 

The quantity w d  also contains a second term: &(t) .  Since 6(t) is a function of A(t )  
and B(t),  it is a random process. Unfortunately, this partially obscures the detection 
of the first term that contains the desired quantity: (ul). Clearly, it is important to 
determine the extent to which this quantity distorts the desired estimate. The nature 
of 6(t) is addressed in $2.3.  

2.2. The Doppler-signal power spectrum 
The spectrum of the Doppler signal is most easily derived by first determining the 
autocorrelation function and then computing the Fourier transform. Using (2.9), the 
autocorrelation of the sampled output of the mixer is 

x E T-; aiH(r9+(r)(t)+Ari(t))cos(k. ((r)(t)+Ari(t))+yi)] (2.14) " i = l  

N 
x [ i = 1  Z ajH(r~+(r) ( t+7)+Ar, ( t+~))cos(k .  ((r)(t)+Arj(t+7))+yj)], 

where the expected value must be taken over the five random quantities, ai, y i ,  r!, 
(r) ( t )  and Ar,(t). 

In evaluating this expression the following assumptions are made. 
(i) The particles are independent. That is, the position of one particle does not 

influence the position of others. This is only precisely true at low volumetric concen- 
trations. 

(ii) The particles follow faithfully the motion of the fluid in which they are sus- 
pended. 

(iii) The representative length of the sample volume is large when compared with 
the wavelength of the transmitted sound. 

(iv) The relative motion of the particle, (r) + Ari, is independent of the initial 
position ro, of the particle. 

(v) The scattering amplitude and phase have non-zero, time-invariant mean- 
squared values. 

(vi) The mean velocity gradient within the sample volume is zero. In this instance 
this should be interpreted to mean that the mean velocity differences within the 
sample volume are small. 

(vii) The probability of finding ,z particle within a small volume Aw is constant 
throughout the medium. 



452 J .  L.  Garbini, F. K. Forster and J. E .  Jorgensen 

A detailed evaluation of (2.14), given these restrictions, is derived by Garbini (1978). 
The result may be expressed as 

%(7) = const. x [ n= 5 -co S ( r - n r , , ) ] ~ ~ , ~ ~ ~ c o s k , z , ~ ( z ) ~ , ( z , 7 ) ~ ~ ,  (2.15) 

where 

(2.16) 
--m 

is the spatial (three-dimensional) autocorrelation of the sample-volume directivity 
function. Also 

z = [(r) (t + 7) - (r) ( t ) ]  + [Ar(t + 7) - Ar(t)], (2.17) 

and pZ(z, 7) is the probability-density function of z. 
The variable z is the distance that a particle moved during the time 7. The proba- 

bility-density function of z has been described by Batchelor (1949) for turbulent 
motion assumed to  be homogeneous and approximately statistically steady in time 
as a Gaussian function of the form 

- 
where (ui) is the temporal average of the spatial average of the velocities within t'he 
sample volume in the i-direction (the mean velocity in the ith direction for uniform 
flow). The overbar is used to  denote a temporal average. 

(2.19) 

is the covariance matrix. 
Aside from the summation of delta functions in (2.15), which is the result of the 

sampling nature of the pulsed ultrasonic velocimeter, this formulation of the auto- 
correlation function is similar to  that described by Edwards & Angus (1971) for the 
laser-Doppler velocimeter. 

I n  general, the complexity of pZ(z,7) and &(z) make (2.15) difficult to  evaluate. 
However, for certain cases, useful, closed-form calculations are possible. Consider the 
case of isotropic turbulence. Here off-diagonal terms in the covariance matrix K ,  
are zero. The mean-square values of each of the three diagonal components of Kzij 
may be expressed as (Batchelor 1949) 

(2.20) 

where (u'2)i is the turbulence intensity and RL(7) is the Lagrangian time-correlation 
function. This expression for E [ z - ( u ) ~ ) ~ ]  may be simplified greatly if 7 is much 
smaller than the Lagrangian integral time scale 7L. For this condition RL(7) N 1 ,  and 
therefore - - 

E [ ( x  - (u) T ) ~ ]  2: ~ ' ~ 7 ~ .  (2.21) 

The autocorrelation function described in (2.15) consists of a decaying sinusoid 
with it,s maximum value a t  7 = 0. The lengt'h of time t* for which t'he aut,ocorrelation 
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function is significantly non-zero, may be determined by examining the individual 
functions within the integral. 

First, consider a small sample volume in which the dimension in the direction of 
the mean flow is small with respect to the Lagrangian integral length scale 

(2.22) 

The time required for a particle to traverse the sample volume will correspond to the 
maximum correlation t* .  For a sample volume of width E ,  

t* = lt/F). (2.23) 

The maximum significant correlation time t* may be compared with the Lagrangian 
integral time scale rL : 

(2.24) 

By hypothesis, both of the factors on the right-hand side are small. Therefore, the 
'small-time' approximation of (2.21) is valid. 

Next, consider a very large sample volume. For purposes of illustration, and with 
little loss in generality, assume that &(z,, z2, z3)  may be written (in scalar form) as 

Q(z1, z2,23)  = Q l ( Z 1 )  & 2 ( 4  &3(23). (2.25) 

Then the autocorrelation expression (2.15) may be factored into three terms, each 
corresponding to a co-ordinate direction. Consider the term associated with the direc- 
tion of the ultrasonic beam, 

r i - m  

( 2 . 2 6 )  

If the length of the sample volume is very long in this direction then Q1(xl) = 1 .  In  
practice this might be attained by using a long burst duration. As r increases, the 
width of the probability-density function becomes large in comparison with the 
period of the sinusoidal component. The integral will therefore be very small. That is, 
the autocorrelation will be significant for times smaller than t* such that 

E [ ( z ( t * )  - (U) t* )2]  = (F)2 = kh2. (2.27) 

In  words, t* is approximately the time required for a particle to drift one wavelength 
relative to the mean flow. From (2.27), (2.21) and (2.22), this time t* is compared with 
the Lagrangian integral time scale as follows: 

(2.28) 

Therefore, for both small and large sample volumes and for flow conditions and wave- 
lengths which satisfy the above conditions, the longest time that need be considered 
in the autocorrelation function is much smaller than the Lagrangian integral time 
scale. 
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Throughout the remainder of this discussion it will be assumed that < 1, 
according to  (2.24) or (2.28), and therefore the small-time approximation of (2.21) 
is valid. 

The effective directivity of the sample volume of the pulsed ultrasonic Doppler 
velocimeter is a complicated function of the pulse shape, the transducer damping 
cha,racteristics, the shape of the focused beam, the receiver and subsequent detection 
circuits. I n  general, this function is three-dimensional and continuous, with maximum 
value a t  the centre and decreasing nearly monotonically towards the edges. Several 
approximations for the directivity function can be found in the literature (Newhouse 
1973; Jorgensen & Garbini 1974), but the assumption of a Gaussian-shaped directivity 
function has particular mathematical and heuristic advantages in this case. That is, 

where crl, g2, v3 represent the widths of the sample volume along the major axes. It 
will be seen later that  such an assumption compares favourably with measurements 
of the distribution function of highly focused transducers. It follows that the three- 
dimensional autocorrelation function of (2.16) may be expressed as 

The autocorrelation function for the laser-Doppler anemometer, for one dimension, 
having a Gaussian-shaped sample volume, may be found in the literature (George & 
Lumley 1973). On applying (2.15) for the pulsed ultrasonic Doppler velocimet,er this 
result may be extended in a straightforward fashion to  three dimensions. The auto- 
correlation function is seen to  be 

For the small-sample-volume case, from (2.23) and (2.24), 

and (uF)i/(q is small by assumption, therefore 

Also, for the case of a large sample volume, from (2.28), 

(2.31) 

(2.32) 

(2.33) 

(2.34) 7 2  < (-)2 2n = (-)2 h 
k(u'2)4 (u'2)* 
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and, since h/a, is small by assumption, therefore 

(2.35) 

Therefore the expression for the autocorrelation may be rewritten in considerably 
simpler form as 

+m 

Rs(7) = const. x [ n=--00 2 6 ( 7 - n ~ ~ ~ ) ]  exp( - [4Au;872k2 

- -  - 
+&r2(y+-+*)]]exp-[  GG2 k2(U1)'272 ] c o s k m ,  (2.36) 

where (u1)'2 is the variance of the spatially averaged velocity fluctuations in the el- 
direction and Aui2 is the variance of the deviation of the velocities within the sample 
volume from the spatially averaged velocity. It may be shown that 

- 

(2.37) 

The power spectrum of the sampled output of the mixer is obtained by taking the 
Fourier transform of the autocorrelation (2.36). Applying the Fourier convolution 
theorem, we have 

w - k(uI) --) 2nn 2 ( w  + k g )  -?)I 
9 (2.38) 

7 r ~  + exp 
S,(w) = const. x 

2 Aw: 2AwE 
where 

(2.39) 

Finally, the Doppler signal is produced by applying the sampled output of the mixer 
to  a 'hold ' circuit where the value of each sample is sustained continuously until the 
next sample. The result is low-pass filtered to  remove high-frequency harmonics of 
the 'hold ' pulses. The Doppler spectrum is 

(2.40) 

where IF(w)I2 is the square of the magnitude of the low-pass filter function. 

summation in (2.38) is retained, then the spectrum becomes 
If the filter is considered to be ideal, and of such width that only the first term in the 

Also, if the pulse-repetition frequency is much higher than the highest significant 
frequency component in the first factor in (2.41), then 

(2.42) 

where the result has been normalized with respect to the total power. From this expres- 
sion and that of (2.39), it is seen that the Doppler-signal spectrum is centred a t  the 
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frequency corresponding to the spatial-average velocity in the beam direction and is 
approximately Gaussian in shape. The width of the spectrum, Aw, in (2.39)) may be 
related to the standard deviation of the turbulent-velocity fluctuations and to the 
time required for a particle to traverse the sample volume in the direction of the 
mean flow (transit-time effect). In general, other effects can also be sources of broaden- 
ing in the Doppler-signal spectrum. These may include: (i) gradients in mean velocity 
within the sample volume; (ii) geometric effects resulting from large sample volumes 
in the near field of unfocused transducers (Newhouse, Varner & Bendick 1977); (iii) 
deviation from idealized signal processing; or (iv) anisotropic or non-stationary tur- 
bulence effects. For the situations considered here these factors are small and will be 
neglected. 

The intensity of the turbulence velocity fluctuations is defined as the ratio of r.m.s. 
velocity fluctuations to the local mean velocity. Equations (2.2), (2.37)) (2.39) and 
(2.42) indicate that the turbulence intensity may be evaluated from measurements of 
the mean and width of the Doppler-signal spectrum according to  

4 
intensity = [ ($) cos2 e - a21 , (2.43) 

where Aw, and 75 are respectively the width and mean of the Doppler-signal spectrum, 
and a is a parameter descriptive of the velocimeter: 

h 
a =  

4 4 2  7Tuv’ 
(2.44) 

where uv is the width of the sample volume in the direction of the mean flow, h is the 
wavelength of the acoustic carrier and 0 is the Doppler angle. An interesting situation 
arises when the sample volume can be made sufficiently large with respect to the 
wavelength such that the second term in (2.43) is very small. In that case, AwC/G may 
be interpreted directly as a measure of the turbulence intensity without any knowledge 
of the velocimeter parameters uv and A. For the usual ranges of permissible wave- 
lengths and intensities, this condition could only exist for very large sample volumes. 

2.3. The Doppler-ambiguity power spectrum 

An estimate of the one-dimensional energy spectrum for the direction parallel to the 
ultrasonic beam may be obtained by computing the power spectrum of the detected 
velocity signal. From (2.13),  this signal is equal to 

(2.45) 

The first term is the instantaneous spatial average of the velocity components in 
the direction of the ultrasonic beam, as in (2.5). The second term is an unwanted 
artifact arising from the measurement process. In the analysis of both radar systems 
and laser-Doppler velocimeters the quantity analogous to this term is referred to as 
the Doppler ambiguity. The contribution of this quantity to the Doppler velocity 
signal is very important to the measurement of the one-dimensional spectrum. 

Since it may be shown that (r) and @ are independent, the spectral process of the 
sum of the two terms in (2.45) is equal to the sum of the spectral processes. That is, 

d 
w d  = -& [(k . (r)) -k @ ( t ) ] .  

(2.46) 
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The relationship between the spectrum of the spatial average of the velocity, 
LS'(~~~)(U) and the true one-dimensional spectrum is discussed in § 2.4. 

Determination of the spectrum of the Doppler-ambiguity term Sk(w) ,  where b is 
described in (2.12), and A(t )  and B(t) are Gaussian, is a classical problem of F M  signal- 
detection theory. It was first examined by Rice (1945, 1949) and more generally 
formalized by Middleton (1950) and Lawson & Ulenbech (1950). The correlation 
function of 6 is 

where 

(2.47) 

(2.48) 

In  general, the correlation coefficient 9(7),  and therefore R,5(7), are functions of 
the sample-volume specification. From (2.47) and (2.48), as 7 approaches zero, the 
value of the autocorrelation becomes logarithmically infinite. This indicates that the 
mean-square value of the PUDV velocity signal will be infinite. Of course, in practice 
the bandwidth of W d  is limited so that the actual signal has finite power. However, 
this does demonstrate that attempting to equate the r.m.6. value of the detected 
velocity signal to the r.m.s. value of the actual velocity fluctuations is likely to result 
in substantial errors. 

An expression for the autocorrelation of A(t )  has been computed in Garbini (1978). 
The calculation is similar to that of the correlation function of the Doppler signal, 
except that the expectations are taken over ai, yi, rl, {r), and Ari. 

For the case of a general sample volume described in terms of Q(rl,  r2,  r3 )  defined by 
(2.16), and using (2.11) and (2.48), the correlation coefficient is 

g ( 7 )  = ~ + m c o s k S l  -m S+mQ(R+s)PR(R,7)dRPs(S,r)ds,  - m  (2.49) 

R = {r)(t+7)-{r)(t), 8 = 4r(t+~)-Ar(t), (2.50) 
where 

and PR(R, 7) and P,(S, 7 )  are the respective probability functions. 
Again, it is assumed that (i) the turbulence is homogeneous, and that there are no 

mean velocity gradients, and that (ii) the ' small-time ' approximation for particle 
motion is valid. Then 

and the probability density functions are of the form 

(2.53) 

If, as in 32.2, we examine the specific case of a Gaussian-shaped sample-volume 
distribution function of the form given in (2.29), the form of the correlation coefficient 

(2.54) 
is 

g ( 7 )  = exp [ - &42~2],  
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FIGURE 3. Power spectrum of the Doppler-ambiguity process. 

where 

(2.55) 

The spectrum, corresponding to  the Fourier transform of (2.47), when g ( 7 )  is of the 
form indicated by (2.54), was determined by Rice (1949). Applied to this specific case 
it is 

(2.56) 

Similar expressions exist for the one-dimensional case of the Iaser-Doppler velocimeter 
(Durrani & Greated 1973; George & Lumley 1973). The function 86  is plotted in 
figure 3. Notice that the magnitude of the ambiguity spectrum a t  the origin is directly 
proportional to  the quantity A. The two terms in A2, from (2.55), can be identified as 
the primary causes of ambiguity noise. The first term in A2 corresponds to  the square 
of the inverse of the transit time through the sample volume. A decrease in the transit 
time will therefore cause an increase in the level of the ambiguity spectrum. 

The second term is associated with the mean-square deviations of individual particle 
velocities from the spatial average of the velocity. Therefore an increase in the turbu- 
lence itself will contribute to  an increase in the ambiguity level. 

Figure 4 illustrates the large extent to which the ambiguity spectrum corrupts the 
estimate of the one-dimensional energy spectrum. Shown are the one-dimensional 
energy spectrum for flow in a pipe (Laufer 1954), and a theoretical prediction of the 
same quantity as measured with high-resolution pulsed ultrasonic Doppler velocimeter 
under typical conditions (major sample-volume dimension = 1 mm). 

The ambiguity level for a typical laser velocimeter is also indicated for purposes of 
comparison. For the normalization shown in this figure, the level of the ambiguity 
component of the spectrum as k approaches zero is proportional to  the square of the 
instrument carrier wavelength. The laser device will nearly always have a substantially 
lower ambiguity level. The principal reason for this advantage is the lower correspond- 
ing value of wavelength obtainable. 
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FIGURE 4. Spectrum of the velocity fluctuations for pipe flow, as measured with 
pulsed ultrasonic and the laser velocimeters. U = 54 cm/s, D = 2.54 em. 

For the ultrasonic measurement, the large Doppler ambiguity imposes a severe 
restriction on the value of the velocity spectral estimate. Traditional parameters of 
turbulence, such as intensity, microscale and integral scale, are usually computed 
from measurements of the turbulence spectrum or deduced directly from the time 
history of the velocity. Unless the magnitude of the Doppler-ambiguity components 
can be reduced relative to  those associated with velocity fluctuations, calculations of 
this type are meaningless. 

From (2.131, (2.46) and (2.56), the value of the velocity components can be raised 
in proportion to that of the ambiguity process by increasing the acoustic carrier 
frequency. However, such an increase is not always practical. Attenuation of acoustic 
energy usually increases rapidly with frequency. Therefore a high-frequency carrier 
can limit the useful range of the instrument. 

Another method of reducing the ambiguity component Sb(w)  is to increase the 
transit time by increasing the size of the sample volume. This also has limited advant- 
ages. Section 2.4 illustrates that the dimensions of the sample volume must not be 
made arbitrarily large. 

Examples of the effects of the Doppler ambiguity on turbulent measurements are 
examined much more intensively in the experimental portion of this study (Garbini 
et al. 1982). 

2.4. Attenuation of spectra due to Jinite sample volume 

Because the sample volume is of finite size, the measured velocity represents a spatial 
average of the velocity weighed by the effective sample volume directivity function 
rather than the velocity a t  a particular point. This causes partial attenuation of even 
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large velocity fluctuations and virtual insensitivity to  small eddies. Estimates of 
turbulence spectra based on these measurements will, therefore, be characterized by 
progressively greater attenuation at higher frequencies. This problem has been studied 
extensively in the field of meteorological observations using pulsed radar (Rogers & 
Tripp 1964; Srivastava & Atlas 1974; Sychra 1972). It is not difficult to show that the 
basic results can be applied to the pulsed ultrasonic Doppler velocimeter in a straight- 
forward fashion. 

Consider the correlation of the velocity signals from two sample volumes, at points 
a and p, separated in a field of homogeneous turbulence at a dist,ance (rl, r2 ,  r3). Since 
the ultrasonic velocimeter measures only the velocity components in the direction of 
the beam (referred to as the l-direction), denote the correlat'ion of the spatial-averaged 
velocit.ies as 

Here, the brackets ( ) refer to  the quantities computed from the spatially averaged 
velocities. Then, from (2.5) and (2.57)) 

where Pll(rl, r2,  r 3 )  = (uJa ( u , ) ~  is the correlation function for the true velocities in the 
1-direction a t  points a and p. The function &(yl, r,, r3), originally defined in (2.16)) is 
the three-dimensional autocorrelation function of the effective sample volume 
directivity. 

Taking the Fourier transform of (2.58), the ( 1 ,  1)-component of the three-dimen- 
sional spatially averaged spectrum tensor is 

(Ell(kl? k!Z, '3)) = E1l(kl) kZ, k3)93&(kl, "2, '3)) (2.59) 

where Ell(kl, k,, k3) is the (1, 1)-component of the actual three-dimensional spectrum 
tensor, and F3&(kl,  k,, k3) is the three-dimensional Fourier transform of Q(rl, r2,  r3 ) .  
The quantities (kl, k,, k3) are the components of the wavenumber vector. In  words, the 
measured spectrum is equal to  the actual spectrum filtered in three dimensions by Q. 

The relationship between the three-dimensional and the one-dimensional longitu- 
dinal spectra is given by 

(EL.(kl)) = /I-+: (E1l(kl) k,, k3))dk2dk3, (2.60) 

and the corresponding correlation is related by the Fourier transform, 

(Pll(rl, 0,O))  = (EL(kl)) eiklrldkl. (2.61) 

For isotropic turbulence, the relationship between the spatial-average one-dimen- 
sional transverse spectrum and corresponding correlation funct~ion is given by 

I r 4 . m  

(Pl,(O, r,, 0)) = A J  ' ( E T ( k , ) )  eik2ridk,. 
2 - m  

(2.62) 

(2.63) 
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FIGURE 5 .  Attenuation of the one-dimensional turbulence spectrum 

due t o  finite sample-volume size. 

The mean-square value of the spatially averaged velocity fluctuations, referred to in 
previous sections, is 

= I-im (EL(kl))dkl = (EL(k , ) )dk2 .  
-m -m 

(2.64) 

To illustrate the effects of spatial attenuations, it  is useful to examine the specific 
case of a Gaussian-shaped sample-volume directivity function and isotropic incom- 
pressible flow. For these circumstances the vector velocity field is solenoidal (zero 
divergence). If the directivity function is defined by (2.29), theory developed for 
circular-beam pulsed radar (Sychra 1972) can be adapted to give the measured one- 
dimensional longitudinal and transverse spectra 

where 

y ( P )  = 2/=exp [ -p2(u~cos2O+~~sin2O)]  [k%+p2sin2O]dO, (2.67) 
0 

E(k)  is the three-dimensional energy-spectrum function, and ul and u2 are respectively 
the axial and cross-beam dimensions of the sample volume. 
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For purposes of demonstration assume that the sample volume is spherical (al = r2) 
and that E ( k )  is of the form described by Pao (1965) for the small-scale structure of 
turbulence a t  very large wave and Reynolds numbers : 

E ( k )  = adk-5  exp ( -#ave-+k4), a = 1.7, (2.68) 

where e is the dissipation per unit mass and v is the kinematic viscosity. Since this 
form of E ( k )  has been used in the literature to explore theoretically the spatial attenua- 
tion in atmospheric radar and laser velocimeter systems, it may serve as a useful basis 
for comparison. 

The unattenuated longitudinal one-dimensional spectrum and the corresponding 
spatial-average quantity for various sizes of sample volumes with circular symmetry 
are shown in figure 5. As an example consider a sample volume for which u = 0.05 cm, 
measuring flow with e = 27 cm/s (corresponding to  pipe flow, U = 54 cm/s and 
D = 2.54) (Berman & Dunning 1973) which results in 7/2*a1 = 0.2. It is clear that 
the amount of attenuation suffered by the pulsed Doppler velocimeter may be sub- 
stantial. Sample-volume size in relation to  the geometry of the flow will be a major 
consideration in evaluating the accuracy of the spectral estimate. 

In  the experimental portion of this investigation it is necessary to  predict the amount 
of spectral attenuation based on thermal-anemomet,er measurements of actual one- 
dimensional longitudinal spectra. With the previous assumptions of isotropic turbu- 
lence and incompressible flow, the vector velocity field is solenoidal (zero divergence). 
For that case the three-dimensional energy spectrum E ( k )  is related to the longitudinal 
one-dimensional spectrum by 

E ( k )  = 4 k 3 z  [I& (E , (k ) ) ] .  
dk kdk  

(2.69) 

The second derivative makes direct numerical application of (2.69) to measured data 
impractical. However, substituting (2.69) into (2.65) and integrating twice by parts 
yields a form suitable for numerical evaluation. The expression for the spatial average 
longitudinal spectrum becomes 

( E L ( k l ) )  = exp ( - a: k:) EL@,)  + 2 4  exp [ - kf(a21- uf)] 

x Ik: exp ( - a: g2) (k2  - k; - 2 / 4 )  EL(6)d[. (2.70) 

In  compressible flow the resulting vector velocity field is solenoidal, and therefore 

From this expression and the assumption that the field is isotropic, the longitudinal 
and transverse spectra are related by 

(2.72) 

However, for an arbitrary sample-volume specification the corresponding relation does 
not hold for the spectra of the spatial avera.ge of the velocity. In fact, 

(2.73) 
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is only true in the case of a spherically symmetric sample volume (al = us = as), 
The correct general expression must be derived directly from (2.66) and (2.69).  Again, 
on integrating twice by parts, the measured transverse spectrum is 

where 

Although this equation requires two-dimensional integration, when carefully pro- 
grammed it is feasible to evaluate it numerically. 

It has been suggested (Sychra 1972) that the spatial-average spectrum for pulsed 
radar systems might be 'defiltered' to correct the attenuation on the basis of known 
sample-volume intensity distribution. While this technique has not been extensively 
employed in those systems, it may become a practical necessity for evaluation of small- 
scale flows with the pulsed ultrasonic Doppler velocimeter. 

At this point it is important that a practical aspect of the mesurement of turbulence 
with the pulsed Doppler velocimeter be discussed. Taylor's hypothesis states that, if 
the velocity fluctuations are small in comparison with the mean velocity, then the 
turbulence field may be thought of as being 'frozen' as it is moved past an observation 
point. The spatial correlation of velocities a t  two points a and /3 aligned with the mean 
velocity direction and separated by r will be approximately equivalent to  the time 
correlation of the velocity a t  a single point. That is 

ua(t) u,tdt) = U a ( t )  ua(t + 7 ) 3  (2.77) 

where 7 = r / Z .  A typical procedure for evaluating the spatial correlation would be to 
compute the temporal autocorrelation of the detected velocity signal and then rely 
on Taylor's hypothesis to relate it to the spatial correlation function. 

Correspondingly, the spatial spectrum is expressed in terms of the temporal spec- 
trum by - 

(2.78) 

where ul is the mean velocity, and Taylor's hypothesis relates the spatial and temporal 
frequencies by k, = O J / ~ . .  Here, S(w) is the two-sided ( w :  [ - co, -t 003) velocity spectrum 
related to the autocorrelation through the Fourier transform. Since the Fourier trans- 
form may be defined in several different ways the form used in this analysis is stated 
at this point for clarity: 

~ ( w )  = I-+: ~ ( 7 )  e - f w T d 7 ,  ~ ( 7 )  = - z',[I," S ( w )  eiwTdw. (2.79) 

In  practice, the ultrasonic beam and the direction of the mean velocity are not often 
collinear. I n  this case, the spatial correlation implied under Taylor's hypothesis does 
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FIQURE 6. Measurement of the correlation function with Doppler angle equal to 8. 

not correspond to (Pll(rl, 0,O))  discussed above. Rather, the autocorrelation of the 
detected velocity signal represents the spatial correlation of the velocity components 
in the direction of the beam as a function of the spatial separation in the direction of the 
mean velocity. This situation is illustrated in figure 6, where 6 is the Doppler angle. 
The correlation corresponds to (Pll(r cos 6, r sin 8,O)). The correlations (Pl1(r, 0,O))  
and (Pll(r cos 6, r sin 6,O))  are distinct even in isotropic turbulence. 

Assuming that Pll is an element of an isotropic tensor, the skewed correlation is 
related to the longitudinal and transverse correlations by 

Therefore it is straightforward to show that, for the situation depicted in figure 6, the 
measured correlation function corresponds to 

(Pll(r cos 8, r sin 8 , O ) )  = (Pll(r, 0,O))  cos2 8+ (Pll(O, r,  0))sin2 6. (2.81) 

Similarly, it follows that the spatial-average spectrum, as measured by the pulsed 
Doppler velocimeter with Doppler angle equal to 6, can be expressed as 

(Eo(k l ) )  = ( E L ( k l ) )  cos2 6 + (ET(k l ) )  sin2 6. (2.82) 

Therefore (2.70), (2.74) and (2.82) may be used to predict the first term in (2.46) for 
the spectrum of the detected velocity signal from the actual longitudinal one-dimen- 
sional energy spectrum. 

3. Ambiguity reduction using two sample volumes 
As seen in 9 2.3, the Doppler ambiguity is a major source of error in estimating the 

one-dimensional energy spectrum. One possible method of improving the measure- 
ment (investigated by George & Lumley (1973) for the laser-Doppler velocimeter) is 
to subtract the statistically independent ambiguity spectrum from the measured 
spectrum. Although a similar procedure might be applied to the pulsed ultrasonic 
Doppler velocimeter, a disadvantage of this method is that i t  entails an explicit 
theoretical prediction of the ambiguity spectrum. This, in turn, requires that the 
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flow situation correspond precisely to a case for which theoretical results can be 
practically evaluated and that certain flow-related parameters be known a priori. 
I n  addition, the ambiguity components of the measured spectrum must be accurately 
estimated. The improvement of the turbulence spectrum measurement cannot be 
greater than the combined accuracies of this prediction and the spectral estimate. 

A more direct method, not requiring a prediction of the ambiguity, of using the 
cross-correlated velocity signals from two laser-Doppler velocimeter sample volumes 
has been investigated by Clark ( 1970) and by van Maanen, van der Molen & Blom (1 975). 
Use of this procedure with the ultrasonic Doppler velocimeter seems very promising. 
A major obstacle in using the two-sample-volume method with the laser-Doppler 
velocimeter is the complex alignment of the laser optics to define the two-beam 
intersection. Fortunately, in a pulsed Doppler velocimeter, two sample volumes may 
be established on a single acoustic beam in a relatively simple manner. The mixer 
output is applied to two sampling circuits. Both circuits sample at the pulse 
repetition frequency 1 / T , ~ ,  but differ slightly in phase. The resulting Doppler signals 
correspond to  measurements from two sample volumes, separated in space (McLeod 
1973). The relative positions of the sample volumes are therefore fixed electronically, 
and the only alignment necessary is that of the single ultrasonic beam. 

The technique can be outlined as follows. Two closely spaced but non-overlapping 
sample volumes are placed in the flow a t  the desired observation point. The detected 
velocity signals from each are represented by 

where a and /3 denote the locations. Cross-correlating these two time signals yields 

W d a ( t )  Wd,9(t + 7, = k2<Ul)a ( t )  (%),9 ( t  + 7, + k('l)a ( t )  4,9(t + 7, 

As in 3 2.3, the spatial-average velocity and the ambiguity processes are uncorrelated. 
Therefore the second and third terms of (3.2) are zero. If the two sample volumes 
contain different particle populations then the cross-correlation of the two ambiguity 
processes will be zero. Also, if the sample volumes are sufficiently close together the 
cross-correlation of'the signals from the two sample volumes approximates the auto- 
correlation of the velocity a t  the observation point. The resulting cross-spectrum will 
be an estimate of the one-dimensional energy auto-spectrum, but will not contain the 
ambiguity component. 

There are, however, several considerations in using this method with the ultrasonic 
Doppler velocimeter. First, it may be necessary to overlap the sample volumes partially 
to  avoid distortion of the velocity spectrum. To the extent of this overlap, the ambi- 
guity processes of the two sample volumes are fractionally correlated. Therefore some 
ambiguity components will still be present in the spectra. Also, if one sample volume 
lies 'in the shadow' of the other with respect to  the mean flow, a portion of the particle 
population travels virtually unchanged from one sample voIume to the other (see 
figure 7).  Again, this will cause a partial correlation of the ambiguity processes. 

On the other hand, if the sample volumes are too far apart, the cross-correlation 
deviates radically from the desired velocity correlation. The quantity that we seek to  
measure is the correlation between a velocity component a t  two different points 
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FIGURE 7 .  The conditions of overlap and shadowing of the sample volumes 
in the dual-sample-volume method. 
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FIGERE 8. Two-point correlation. 

separated by a distance r along a line parallel to  the mean-,law direct-an (see figure 6). 
When the cross-correlation of the detected velocity is computed for two spatially 
separated sample volumes the result, according to  Taylor's hypothesis (see 8 2.4), is 
that shown in figure 8. I n  other words, the two measured points are not located along 
the mean-flow direction. This causes distortion of the correlation function, as shown 
a t  low absolute values of the time shift r .  I n  turn, this results in added attenuation of 
the energy spectrum a t  high wavenumbers. 

For the case of isotropic turbulence, momentarily neglecting the effects of sample- 
volume spatial averaging, the cross-correlation of the velocities for separated sample 
volumes implied by figure 8 can be determined: 

1 Y sin6 Pll(x) =f((x2+v;sin2B)4)cos2 6 - a r c t a n L  
2 

+ g( (9 + v: sin2 6 ) t )  sin2 (3.3) 

where f ( r )  and g(r )  are the actual longitudinal and transverse correlation functions, 
xis the separation of the sample volumes in the direction of mean flow, 8 is the Doppler 
angle, and v1 is the distance of separation of the sample volumes along the beam axis. 
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The corresponding spectrum is determined from the Fourier transform of this equation 
for known functions f ( r )  and g(r). 

I n  addition, if the sample volumes are placed on a line that is approximately per- 
pendicular to  the direction of mean velocity, in an attempt to reduce the shadow effect, 
the average velocity in the direction of the transducer is nearly zero. This results in 
very low Doppler-frequency shifts. For reasons associated with the nature of the 
signal-processing circuits, low-frequency components are usually lost. 

Optimization of the system configuration with respect to these compromises clearly 
requires a knowledge of the extent to which the Doppler ambiguity is reduced as a 
function of the sample volume overlap and shadowing. That is, i t  is necessary to 
evaluate the spectrum associated with the autocorrelation in the fourth term of (3.2): 

Sag(w) = S + m ~ a ( t ) ~ g ( t + 7 ) e - l w r d 7 .  - W  (3.4) 

This function has been derived by Garbini (1978) under the same assumptions stated 
in 5 2.1. Briefly, the cross-correlation function may be obtained in a manner similar 
to  the derivation of the autocorrelation made by Rice (1949), which was referred to 
in 3 2.3. This results in 

where gag(t) is the cross-correlation coefficient of A ( t )  evaluated with sample volumes 
located at the two positions a and p. That is 

The functions A(t )  and Q, are defined respectively in (2.11) and (2.12). 
For the specific case of two sample volumes with Gaussian-shaped sample-volume 

directivity functions and centre-to-centre separation of (vl, vz, v3), the cross-correlation 
coefficient can be shown to be 

(3.7) 

For the pulsed Doppler velocimeter in which the sample volumes are spaced elec- 
tronically along the acoustic beam, vz and v3 are zero. Notice that, when v1 is also 
zero, the result reduces to the expression for the autocorrelation coefficient of A ( t )  
discussed in 3 2.3. From the Fourier transform of (3.5)) the cross-spectrum is computed: 

where 
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FIQ~RE 9. Effect of sample-volume spacing on ambiguity reduction for 
Doppler angle = 60' and overlap ratio = 0,  1, 2, 3, 4. 
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FIQURE 10. Effect of the Doppler angle on ambiguity reduction for 
Doppler angle = O", 20°, 40°, 60°, 80'. 
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In  figure 9 the normalized magnitude of the theoretical cross-spectrum from (3.8) 
is plotted. This illustrates the reduction in the ambiguity for the situation in which 
two spherically symmetric sample volumes are positioned with normalized separation 
vl/rl and with fixed angle between the beam and the direction of mean flow equal to 
60'. Even for the small separation of vl/al  = 1,  which corresponds to  substantial 
overlap of the sample volumes, the value of the ambiguity at w = 0 is reduced by a 
factor of slightly less than two. Notice that the bandwidth, as well as the amplitude, 
of the ambiguity spectrum is decreased at larger sample-volume separations. 
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Conversely, the effect of shadowing on the ambiguity reduction is seen in figure 10, 
where the normalized magnitude of the cross-spectrum at w = 0 is plotted for various 
values of the Doppler angle. It should be noted that Doppler angles greater than 75" 
are generally impractical. 

4. Conclusions 
A three-dimensional stochastic model of the pulsed ultrasonic Doppler velocimeter 

has been represented in detail. The analysis predicts the correlation and spectral 
functions of the Doppler and the detected velocity signals. Explicit results are given 
for the case in which the sample-volume directivity is assumed to be a three-dimen- 
sional Gaussian function. 

Results indicate that the turbulent intensity can be deduced from the broadening 
of the spectrum of the Doppler signal and a mathematical description of the effective 
sample volume directivity. 

In  the measurement of one-dimensional velocity spectra at  least two major compli- 
cations are identified and quantified. First, the presence of a time-varying broad-band 
random process (the Doppler-ambiguity process) obscures the spectrum of the random 
velocity. Secondly, the spatial averaging of the velocity field in the sample volume 
causes attenuation in the measured velocity spectrum. These phenomena are similar 
to those encountered in laser and radar velocimetry. These effects are aggravated for 
the ultrasonic instrument due to the relatively large sample volumes and wavelengths 
required. 

It has been shown that the influence of the Doppler ambiguity process can be reduced 
by the use of two electronically formed sample volumes on a single acoustic beam. The 
overlap and orientation of these sample volumes are major considerations. The effects 
of these parameters on the detected velocity spectrum have been quantified in terms 
of the sample volume directivity. 

In  part 2 of the study all of the analytical results are confronted experimentally. 

This research was partially funded by the National Institute of Health through 
research grant number HL 07293. 
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